Login / Signup

A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes.

Kimiko UchiiHideyuki DoiToshifumi Minamoto
Published in: Molecular ecology resources (2015)
The invasion of non-native species that are closely related to native species can lead to competitive elimination of the native species and/or genomic extinction through hybridization. Such invasions often become serious before they are detected, posing unprecedented threats to biodiversity. A Japanese native strain of common carp (Cyprinus carpio) has become endangered owing to the invasion of non-native strains introduced from the Eurasian continent. Here, we propose a rapid environmental DNA-based approach to quantitatively monitor the invasion of non-native genotypes. Using this system, we developed a method to quantify the relative proportion of native and non-native DNA based on a single-nucleotide polymorphism using cycling probe technology in real-time PCR. The efficiency of this method was confirmed in aquarium experiments, where the quantified proportion of native and non-native DNA in the water was well correlated to the biomass ratio of native and non-native genotypes. This method provided quantitative estimates for the proportion of native and non-native DNA in natural rivers and reservoirs, which allowed us to estimate the degree of invasion of non-native genotypes without catching and analysing individual fish. Our approach would dramatically facilitate the process of quantitatively monitoring the invasion of non-native conspecifics in aquatic ecosystems, thus revealing a promising method for risk assessment and management in biodiversity conservation.
Keyphrases
  • risk assessment
  • circulating tumor
  • single molecule
  • escherichia coli
  • cell free
  • gene expression
  • dna methylation
  • nucleic acid
  • real time pcr
  • genetic diversity