Login / Signup

Sampling reactive regions in phase space by following the minimum dynamic path.

Oliver T UnkeSebastian BrickelMarkus Meuwly
Published in: The Journal of chemical physics (2019)
Understanding mechanistic aspects of reactivity lies at the heart of chemistry. Once the potential energy surface (PES) for a system of interest is known, reactions can be studied by computational means. While the minimum energy path (MEP) between two minima of the PES can give some insight into the topological changes required for a reaction to occur, it lacks dynamical information and is an unrealistic depiction of the reactive process. For a more realistic view, molecular dynamics (MD) simulations are required. However, this usually involves generating thousands of trajectories in order to sample a few reactive events and is therefore much more computationally expensive than calculating the MEP. In this work, it is shown that a "minimum dynamic path" (MDP) can be constructed, which, contrary to the MEP, provides insight into the reaction dynamics. It is shown that the underlying concepts can be extended to directly sample reactive regions in phase space. The sampling method and the MDP are demonstrated on the well-known 2-dimensional Müller-Brown PES and for a realistic 12-dimensional reactive PES for sulfurochloridic acid, a proxy molecule used to study vibrationally induced photodissociation of sulfuric acid.
Keyphrases
  • molecular dynamics
  • density functional theory
  • heart failure
  • depressive symptoms
  • healthcare
  • social media
  • climate change
  • drug induced
  • endothelial cells