Login / Signup

Pleurotus ostreatus Grown on Agro-Industrial Residues: Studies on Microbial Contamination and Shelf-Life Prediction under Different Packaging Types and Storage Temperatures.

Sami Abou FayssalZeina El SebaalyYoussef N Sassine
Published in: Foods (Basel, Switzerland) (2023)
The short shelf-life of mushrooms, due to water loss and microbial spoilage, is the main constraint for commercialization and consumption. The effect of substrate type combined with different temperatures and packaging conditions on the shelf-life of fresh Pleurotus ostreatus is scantily researched. The current study investigated the shelf-life of fresh oyster mushrooms grown on low (0.3, 0.3, 0.17) and high (0.7, 0.7, 0.33) rates of olive pruning residues (OLPR), spent coffee grounds (SCG), and both combined residues (OLPR/SCG) with wheat straw (WS), respectively, at ambient (20 °C) and 4 °C temperatures under no packaging, polyethylene plastic bag packaging (PBP), and polypropylene vacuum bag packaging (VBP). Results showed that at ambient temperature OLPR/SCG mushrooms PBP-bagged had an increased shelf-life by 0.5-1.2 days in comparison with WS ones. The predictive models adopted to optimize mushroom shelf-life at ambient temperature set rates of 0.289 and 0.303 of OLPR and OLPR/SCG, respectively, and PBP as the most suitable conditions (9.18 and 9.14 days, respectively). At 4 °C, OLPR/SCG mushrooms VBP-bagged had a longer shelf-life of 2.6-4.4 days compared to WS ones. Predictive models noted a maximized shelf-life of VBP-bagged mushrooms (26.26 days) when a rate of 0.22 OLPR/SCG is incorporated into the initial substrate. The combination of OLPR and SCG increased the shelf-life of fresh Pleurotus ostreatus by decreasing the total microbial count (TMC) while delaying weight loss and veil opening, and maintaining carbohydrate content, good firmness, and considerable protein, in comparison with WS regardless the storage temperature and packaging type.
Keyphrases
  • air pollution
  • weight loss
  • microbial community
  • particulate matter
  • type diabetes
  • heavy metals
  • high resolution
  • wastewater treatment
  • binding protein
  • human health