Login / Signup

Rapidity and Energy Dependencies of Temperatures and Volume Extracted from Identified Charged Hadron Spectra in Proton-Proton Collisions at a Super Proton Synchrotron (SPS).

Pei-Pin YangFu-Hu LiuKhusniddin K Olimov
Published in: Entropy (Basel, Switzerland) (2023)
The standard (Bose-Einstein/Fermi-Dirac, or Maxwell-Boltzmann) distribution from the relativistic ideal gas model is used to study the transverse momentum (pT) spectra of identified charged hadrons (π-, π+, K-, K+, p¯, and p ) with different rapidities produced in inelastic proton-proton (pp) collisions at a Super Proton Synchrotron (SPS). The experimental data measured using the NA61/SHINE Collaboration at the center-of-mass (c.m.) energies s=6.3, 7.7, 8.8, 12.3, and 17.3 GeV are fitted well with the distribution. It is shown that the effective temperature (Teff or T ), kinetic freeze-out temperature (T0), and initial temperature (Ti) decrease with the increase in rapidity and increase with the increase in c.m. energy. The kinetic freeze-out volume ( V ) extracted from the π-, π+, K-, K+, and p¯ spectra decreases with the rapidity and increase with the c.m. energy. The opposite tendency of V , extracted from the p spectra, is observed to be increasing with the rapidity and decreasing with the c.m. energy due to the effect of leading protons.
Keyphrases
  • density functional theory
  • electron transfer
  • machine learning
  • molecular dynamics
  • deep learning