Login / Signup

Nitrogen additions stimulate litter humification in a subtropical forest, southwestern China.

Qun LiuLiyan ZhuangXiangyin NiChengming YouWanqin YangFuzhong WuBo TanKai YueYang LiuLi ZhangZhenfeng Xu
Published in: Scientific reports (2018)
Despite the importance of nitrogen (N) deposition for soil biogeochemical cycle, how N addition affects the accumulation of humic substances in decomposing litter still remains poorly understood. A litterbag experiment was conducted to assess the potential effects of N addition (0 kg·N·ha-1·year-1, 20 kg·N·ha-1·year-1 and 40 kg·N·ha-1·year-1) on mass remaining and humification of two leaf litter (Michelia wilsonii and Camptotheca acuminata) in a subtropical forest of southwestern China. After one year of decomposition, litter mass was lost by 38.1-46.5% for M. wilsonii and 61.7-74.5% for C. acuminata, respectively. Humic substances were declined by 12.1-23.8% in M. wilsonii and 29.1-35.5% in C. acuminata, respectively. Nitrogen additions tended to reduce mass loss over the experimental period. Moreover, N additions did not affect the concentrations of humic substances and humic acid in the early stage but often increased them in the late stage. The effect of N addition on the accumulation of humic substances was stronger for C. acuminate litter than in M. wilsonii litter. Litter N and P contents showed positive correlations with concentrations of humic substances and fulvic acid. Our results suggest that both litter quality and season-driven environmental changes interactively mediate N impacts on litter humification. Such findings have important implications for carbon sequestration via litter humification in the subtropical forest ecosystems experiencing significant N deposition.
Keyphrases
  • climate change
  • early stage
  • drinking water
  • squamous cell carcinoma
  • human health
  • lymph node
  • rectal cancer