Login / Signup

Single axonal morphology reveals high heterogeneity in spinocerebellar axons originating from the lumbar spinal cord in the mouse.

Yongquan ZhangYuanjun LuoKazuma SasamuraIzumi Sugihara
Published in: The Journal of comparative neurology (2021)
Among the spinocerebellar projections vital for sensorimotor coordination of limbs and the trunk, the morphology of spinocerebellar axons originating from the lumbar cord has not been well characterized compared to those from thoracic and sacral cords. We reconstructed 26 single spinocerebellar axons labeled by biotinylated dextran injections into the gray matter of the lumbar spinal cord in mice. Axon terminals were mapped with the zebrin pattern of the cerebellar cortex. Reconstructed axons were primarily classified into ipsilaterally and contralaterally ascending axons, arising mainly from the dorsal and ventral horns, respectively. The majority of ipsilateral and contralateral axons took the dorsal-medullary and ventral-pontine pathways, respectively. The axons of both groups terminated mainly in the vermal and medial paravermal areas of lobules II-V and VIII-IXa, often bilaterally but predominantly ipsilateral to the axonal origin, with a weak preference to particular portions of zebrin stripes. The ipsilateral axons originating from the medial dorsal horn in the upper lumbar cord (n = 3) had abundant (43-147) mossy fiber terminals and no medullary collaterals. The ipsilateral axons originating from the lateral dorsal horn in the lower lumbar cord (n = 9) and the contralateral axons (n = 14) showed remarkable morphology variations. The number of their mossy fiber terminals varied from 2 to 172. Their collaterals, observed in 17 axons out of 23, terminated mainly in the medial cerebellar nucleus, nucleus X, and lateral reticular nucleus in various degrees. The results indicated that the lumbar spinocerebellar projection contains highly heterogeneous axonal populations regarding their pathway, branching, and termination patterns.
Keyphrases