Login / Signup

GLP-1 and Its Derived Peptides Mediate Pain Relief Through Direct TRPV1 Inhibition Without Affecting Thermoregulation.

Chul-Kyu ParkEun Jin GoHyunjung JoSung-Min HwangMd Mahbubur RahmanJaeik ParkJi Yeon LeeYoun Yi JoYunJae JungTemugin BertaYong Ho Kim
Published in: Research square (2024)
Hormonal regulation during food ingestion and its association with pain prompted the investigation of the impact of glucagon-like peptide-1 (GLP-1) on the transient receptor potential vanilloid 1 (TRPV1). Both endogenous and synthetic GLP-1 and an antagonist of GLP-1, exendin 9-39, reduced heat sensitivity in naïve mice. GLP-1-derived peptides (liraglutide, exendin-4, and exendin 9-39) effectively inhibited capsaicin (CAP)-induced currents and calcium responses in cultured sensory neurons and TRPV1-expressing cell lines. Notably, the exendin 9-39 alleviated CAP-induced acute pain, as well as chronic pain induced by complete Freund's adjuvant (CFA) and spared nerve injury (SNI) in mice, without causing hyperthermia associated with other TRPV1 inhibitors. Electrophysiological analyses revealed that exendin 9-39 binds to the extracellular side of TRPV1, functioning as a noncompetitive inhibitor of CAP. Exendin 9-39 did not affect proton-induced TRPV1 activation, suggesting its selective antagonism. Among exendin 9-39 fragments, exendin 20-29 specifically binds to TRPV1, alleviating pain in both acute and chronic pain models without interfering with GLP-1R function. Our study revealed a novel role for GLP-1 and its derivatives in pain relief, proposing exendin 20-29 as a promising therapeutic candidate.
Keyphrases