The long form of pVHL is artifactually modified by serine protease inhibitor AEBSF.
Daniel TaradeShelley HeJonathan St-GermainAvi PetroffAnya MurphyBrian RaughtMichael OhhPublished in: Protein science : a publication of the Protein Society (2020)
von Hippel-Lindau protein (pVHL) is the tumor suppressor responsible for ubiquitylating the hypoxia-inducible factor (HIF) family of transcription factors for degradation under normoxic conditions. There are two major pVHL isoforms with the shorter isoform (pVHL19 ) lacking the acidic domain present in the N-terminus of the longer isoform (pVHL30 ). Although both isoforms can degrade HIF and suppress tumor formation in experimental systems, previous research suggests that pVHL30 can undergo posttranslational modifications (PTM) and interact with unique proteins. Indeed, pVHL30 has long been observed to migrate as two species on a reducing polyacrylamide gel, indicating the presence of an uncharacterized PTM on the slower-migrating pVHL30 without an identifiable biological consequence. Thus, there has been considerable effort to elucidate the exclusive biological activity of pVHL30 , if any, by first defining the unique features of the slower-migrating species. We show here that the migration of pVHL30 , but not pVHL19 , is retarded by 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), an irreversible serine protease inhibitor commonly found in protease inhibitor cocktails.
Keyphrases