Login / Signup

Excellent fluorescence detection of Cu2+in water system using N-acetyl-L-cysteines modified CdS quantum dots as fluorescence probe.

Rongjun ZhaoZhezhe WangXu TianHui ShuYue YangXuechun XiaoYude Wang
Published in: Nanotechnology (2021)
View of the negative influence of metal ions on natural environment and human health, fast and quantitative detection of metals ions in water systems is significant. Ultra-small grain size CdS quantum dots (QDs) modified with N-acetyl-L-cysteines (NALC) (NALC-CdS QDs) are successfully prepared via a facile hydrothermal route. Based on the changes of fluorescence intensity of NALC-CdS QDs solution after adding metal ions, the fluorescence probe made from the NALC-CdS QDs is developed to detect metal ions in water systems. Among various metal ions, the fluorescence of NALC-CdS QDs effectively quenched by the addition of Cu2+, the probe shows high sensitivity and selectivity for detecting Cu2+in other interferential metal ions coexisted system. Importantly, the fluorescence intensity of NALC-CdS QDs changes upon the concentration of Cu2+, the probe displays an excellent linear relationship between the fluorescence quenching rate and the concentration of Cu2+in ranging from 1 to 25μM. Besides, the detected limitation of the probe towards Cu2+as low as 0.48μM. The measurement of Cu2+in real water sample is also carried out using the probe. The results indicate that NALC-CdS QDs fluorescence probe may be a promising candidate for quantitative Cu2+detection in practical application.
Keyphrases