Login / Signup

Molecularly engineered hole-transport material for low-cost perovskite solar cells.

Babak PashaeiSebastiano BellaniHashem ShahroosvandFrancesco Bonaccorso
Published in: Chemical science (2020)
Triphenylamine-N-phenyl-4-(phenyldiazenyl)aniline (TPA-AZO) is synthesized via a facile CuI-catalyzed reaction and used as a hole transport material (HTM) in perovskite solar cells (PSCs), as an alternative to the expensive spiro-type molecular materials, including commercial 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD). Experimental and computational investigations reveal that the highest occupied molecular orbital (HOMO) level of TPA-AZO is deeper than that of spiro-OMeTAD, and optimally matches with the conduction band of the perovskite light absorber. The use of TPA-AZO as a HTM results in PSC prototypes with a power conversion efficiency (PCE) approaching that of the spiro-OMeTAD-based reference device (17.86% vs. 19.07%). Moreover, the use of inexpensive starting reagents for the synthesis of TPA-AZO makes the latter a new affordable HTM for PSCs. In particular, the cost of 1 g of TPA-AZO ($22.76) is significantly lower compared to that of spiro-OMeTAD ($170-475). Overall, TPA-AZO-based HTMs are promising candidates for the implementation of viable PSCs in large-scale production.
Keyphrases
  • perovskite solar cells
  • low cost
  • primary care
  • healthcare
  • room temperature
  • quality improvement
  • escherichia coli
  • staphylococcus aureus
  • quantum dots
  • gold nanoparticles