Login / Signup

Simultaneously improving the efficiencies of photo- and thermal isomerization of an oxindole-based light-driven molecular rotary motor by a structural redesign.

Jianzheng MaDi ZhaoLe YuChenwei JiangZhenggang LanFuli Li
Published in: Physical chemistry chemical physics : PCCP (2023)
We designed a novel highly efficient light-driven molecular rotary motor theoretically by using electronic structure calculations and nonadiabatic dynamics simulations, and it showed excellent performance for both photo- and thermal isomerization processes simultaneously. By the small structural modification based on 3-(2,7-dimethyl-2,3-dihydro-1 H -inden-1-ylidene)-1-methylindolin-2-one (DDIYM) synthesized by Feringa et al. recently, an oxindole-based light-driven molecular rotary motor, 3-(1,5-dimethyl-4,5-dihydrocyclopenta[ b ]pyrrol-6(1 H )-ylidene)-1-methylindolin-2-one (DDPYM), is proposed, which displays a significant electronic push-pull character and weak steric hindrance for double-bond isomerization. The newly designed motor DDPYM shows a remarkable improvement of the quantum yield for both EP → ZM and ZP → EM photoisomerization processes, compared to the original motor DDIYM. Furthermore, the rotary motion in photoisomerization processes of DDPYM behaves more like a pure axial rotational motion approximately, while that of DDIYM is an obvious precessional motion. The weakness of the steric hindrance reduces the energy barriers of the thermal helix EM → EP and ZM → ZP inversion steps, and would accelerate two ground-state isomerization steps significantly. Our results confirm the feasibility of simultaneously improving the efficiencies of photo- and thermal isomerization of oxindole-based light-driven molecular rotary motors and this design idea sheds light on the future development of more efficient molecular motors.
Keyphrases
  • molecular dynamics
  • highly efficient
  • single molecule
  • molecular dynamics simulations
  • density functional theory
  • mass spectrometry
  • high resolution