Login / Signup

Contribution of nitric oxide synthase to cutaneous vasodilatation and sweating in men of black-African and Caucasian descent during exercise in the heat.

Caroline M MuiaGregory W McGarrMadison D SchmidtNaoto FujiiTatsuro AmanoGlen P Kenny
Published in: Experimental physiology (2019)
Men of black-African descent are at an increased risk of heat-related illness relative to their Caucasian counterparts. This might be attributable, in part, to reduced cutaneous nitric oxide (NO) bioavailability in this population, which might alter local cutaneous vasodilatation and sweating. To evaluate this, we compared these heat-loss responses in young men (18-30 years of age) of black-African (n = 10) and Caucasian (n = 10) descent during rest, exercise and recovery in the heat. Participants were matched for physical characteristics and fitness, and they were all born and raised in the same temperate environment (i.e. Canada; second generation and higher). Both groups rested for 10 min and then performed 50 min of moderate-intensity exercise at 200 W m-2 , followed by 30 min of recovery in hot, dry heat (35°C, 20% relative humidity). Local cutaneous vascular conductance (CVC%max ) and sweat rate (SR) were measured at two forearm skin sites treated with either lactated Ringer solution (control) or 10 mm NG -nitro-l-arginine methyl ester (l-NAME, a nitric oxide (NO) synthase inhibitor). l-NAME significantly reduced CVC%max throughout rest, exercise and recovery in both groups (both P < 0.001). However, there were no significant main effects for the contribution of NO to CVC%max between groups (all P > 0.500). l-NAME significantly reduced local SR in both groups (both P < 0.050). The contribution of NO to SR was similar between groups such that l-NAME reduced SR relative to control at 40 and 50 min into exercise (both P < 0.05). We demonstrate that ethnicity per se does not influence NO-dependent cutaneous vasodilatation and sweating in healthy young men of black-African and Caucasian descent during exercise in dry heat.
Keyphrases
  • high intensity
  • nitric oxide
  • physical activity
  • nitric oxide synthase
  • heat stress
  • middle aged
  • resistance training
  • hydrogen peroxide
  • mental health
  • preterm birth