Login / Signup

Stable Na Electrodeposition Enabled by Agarose-Based Water-Soluble Sodium Ion Battery Separators.

Alazne OjangurenNeeru MittalErlantz LizundiaMarkus Niederberger
Published in: ACS applied materials & interfaces (2021)
Developing efficient energy storage technologies is at the core of current strategies toward a decarbonized society. Energy storage systems based on renewable, nontoxic, and degradable materials represent a circular economy approach to address the environmental pollution issues associated with conventional batteries, that is, resource depletion and inadequate disposal. Here we tap into that prospect using a marine biopolymer together with a water-soluble polymer to develop sodium ion battery (NIB) separators. Mesoporous membranes comprising agarose, an algae-derived polysaccharide, and poly(vinyl alcohol) are synthesized via nonsolvent-induced phase separation. Obtained membranes outperform conventional nondegradable NIB separators in terms of thermal stability, electrolyte wettability, and Na+ conductivity. Thanks to the good interfacial adhesion with metallic Na promoted by the hydroxyl and ether functional groups of agarose, the separators enable a stable and homogeneous Na deposition with limited dendrite growth. As a result, membranes can operate at 200 μA cm-2, in contrast with Celgard and glass microfiber, which short circuit at 50 and 100 μA cm-2, respectively. When evaluated in Na3V2(PO4)3/Na half-cells, agarose-based separators deliver 108 mA h g-1 after 50 cycles at C/10, together with a remarkable rate capability. This work opens up new possibilities for the use of water-degradable separators, reducing the environmental burdens arising from the uncontrolled accumulation of electronic waste in marine or land environments.
Keyphrases
  • water soluble
  • heavy metals
  • ionic liquid
  • induced apoptosis
  • human health
  • magnetic resonance
  • drinking water
  • cell proliferation
  • endothelial cells
  • cell migration
  • diabetic rats
  • high glucose