Compression Properties of Interlayer and Intralayer Carbon/Glass Hybrid Composites.
Qingtao WangWeili WuWei LiPublished in: Polymers (2018)
The compression properties and mechanisms of interlayer and intralayer Carbon/Glass (C/G) hybrid composites were investigated in this work. As revealed from the experimental results, the compression modulus increases linearly with the increase of carbon fiber content, following the rule of mixtures (ROM). The C/G hybrid ratio is regarded as the decisive factor for the compression modulus of hybrid composites. The positive mixing effect exists on compression strength for interlayer and intralayer hybrid composites, whereas the experimental values are above the theoretical calculation values. The compressive strength of interlayer hybrid composites taking on various hybrid structures differs largely at the same mixed ratio, at which the compressive strength of glass fiber sandwiching carbon fiber is higher than that of carbon fiber sandwiching glass fiber. Through comparing interlayer and intralayer hybrid composites, the impact exerted by layer structures on the compressive strength of interlayer hybrid composites is higher than that of intralayer hybrid composites, which leads to more designable characteristics for interlayer hybrid composites. This work makes it possible to optimize the compression strength of interlayer hybrid structures so that it achieves or basically exceeds pure carbon fiber composites.
Keyphrases