Login / Signup

Photochemically induced cyclic morphological dynamics via degradation of autonomously produced, self-assembled polymer vesicles.

Chenyu LinSai Krishna KatlaJuan Pérez-Mercader
Published in: Communications chemistry (2021)
Autonomous and out-of-equilibrium vesicles synthesised from small molecules in a homogeneous aqueous medium are an emerging class of dynamically self-assembled systems with considerable potential for engineering natural life mimics. Here we report on the physico-chemical mechanism behind a dynamic morphological evolution process through which self-assembled polymeric structures autonomously booted from a homogeneous mixture, evolve from micelles to giant vesicles accompanied by periodic growth and implosion cycles when exposed to oxygen under light irradiation. The system however formed nano-objects or gelation under poor oxygen conditions or when heated. We determined the cause to be photoinduced chemical degradation within hydrated polymer cores inducing osmotic water influx and the subsequent morphological dynamics. The process also led to an increase in the population of polymeric objects through system self-replication. This study offers a new path toward the design of chemically self-assembled systems and their potential application in autonomous material artificial simulation of living systems.
Keyphrases
  • drug delivery
  • drug release
  • cancer therapy
  • high glucose
  • diabetic rats
  • high resolution
  • ionic liquid
  • molecular dynamics simulations
  • oxidative stress
  • rare case