Compartmentalization and Photoregulating Pathways for Incompatible Tandem Catalysis.
Peiyuan QuMichael KuepfertMaryam HashmiMarcus WeckPublished in: Journal of the American Chemical Society (2021)
This contribution describes an advanced compartmentalized micellar nanoreactor that possesses a reversible photoresponsive feature and its application toward photoregulating reaction pathways for incompatible tandem catalysis under aqueous conditions. The smart nanoreactor is based on multifunctional amphiphilic poly(2-oxazoline)s and covalently cross-linked with spiropyran upon micelle formation in water. It responds to light irradiation in a wavelength-selective manner switching its morphology as confirmed by dynamic light scattering and cryo-transition electron microscopy. The compartmental structure renders distinct nanoconfinements for two incompatible enantioselective transformations: a rhodium-diene complex-catalyzed asymmetric 1,4-addition occurs in the hydrophilic corona, while a Rh-TsDPEN-catalyzed asymmetric transfer hydrogenation proceeds in the hydrophobic core. Control experiments and kinetic studies showed that the gated behavior induced by the phototriggered reversible spiropyran to merocyanine transition in the cross-linking layer is key to discriminate among substrates/reagents during the catalysis. The smart nanoreactor realized photoregulation to direct the reaction pathway to give a multichiral product with high conversions and perfect enantioselectivities in aqueous media. Our SCM catalytic system, on a basic level, mimics the concepts of compartmentalization and responsiveness Nature uses to coordinate thousands of incompatible chemical transformations into streamlined metabolic processes.