Login / Signup

Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes.

Laura Albero BlanquerFlorencia MarchiniJan Roman SeitzNour DaherFanny BétermierJiaqiang HuangCharlotte GervilliéJean Marie Tarascon
Published in: Nature communications (2022)
The study of chemo-mechanical stress taking place in the electrodes of a battery during cycling is of paramount importance to extend the lifetime of the device. This aspect is particularly relevant for all-solid-state batteries where the stress can be transmitted across the device due to the stiff nature of the solid electrolyte. However, stress monitoring generally relies on sensors located outside of the battery, therefore providing information only at device level and failing to detect local changes. Here, we report a method to investigate the chemo-mechanical stress occurring at both positive and negative electrodes and at the electrode/electrolyte interface during battery operation. To such effect, optical fiber Bragg grating sensors were embedded inside coin and Swagelok cells containing either liquid or solid-state electrolyte. The optical signal was monitored during battery cycling, further translated into stress and correlated with the voltage profile. This work proposes an operando technique for stress monitoring with potential use in cell diagnosis and battery design.
Keyphrases