Advanced Functional Hierarchical Nanoporous Structures with Tunable Microporous Coatings Formed via an Interfacial Reaction Processing.
Qiaobei DongFanglei ZhouJi JiangWeiwei L XuDinesh Kumar BeheraBratin SenguptaMiao YuPublished in: ACS applied materials & interfaces (2020)
It is challenging, but constructing hierarchical nanoporous structures with microporous coatings for various important applications, such as entrapment of homogeneous catalysts, size/shape selective catalysis, and so forth, is an urgent need. Moreover, microporous inorganic coatings are particularly desirable because of their excellent stability in organic solvents and at elevated temperatures and pressures. In this study, we design a novel liquid phase interfacial reaction process to form a defect-free, hybrid coating, which can be subsequently converted into microporous coatings, with tunable pore size, on nanoporous materials. As an example to entrap functional materials, tetrakis(triphenylphosphine) palladium (Pd(PPh3)4) was in situ synthesized in the mesoporous channels and encapsulated by the microporous coating shell. The encapsulated Pd(PPh3)4 catalyst exhibited negligible Pd leaching, providing a promising solution for the challenging catalyst separation problem in homogeneous catalysis. These results suggest that this novel strategy might be an effective way of forming microporous inorganic coatings on nanoporous materials for entrapping functional materials for wide applications.