Macroscale EEG characteristics in antipsychotic-naïve patients with first-episode psychosis and healthy controls.
L S DominicusB OranjeW M OtteKaren S AmbrosenS DüringF E ScheepersC J StamBirte Yding GlenthøjB H EbdrupE van DellenPublished in: Schizophrenia (Heidelberg, Germany) (2023)
Electroencephalography in patients with a first episode of psychosis (FEP) may contribute to the diagnosis and treatment response prediction. Findings in the literature vary due to small sample sizes, medication effects, and variable illness duration. We studied macroscale resting-state EEG characteristics of antipsychotic naïve patients with FEP. We tested (1) for differences between FEP patients and controls, (2) if EEG could be used to classify patients as FEP, and (3) if EEG could be used to predict treatment response to antipsychotic medication. In total, we studied EEG recordings of 62 antipsychotic-naïve patients with FEP and 106 healthy controls. Spectral power, phase-based and amplitude-based functional connectivity, and macroscale network characteristics were analyzed, resulting in 60 EEG variables across four frequency bands. Positive and Negative Symptom Scale (PANSS) were assessed at baseline and 4-6 weeks follow-up after treatment with amisulpride or aripiprazole. Mann-Whitney U tests, a random forest (RF) classifier and RF regression were used for statistical analysis. Our study found that at baseline, FEP patients did not differ from controls in any of the EEG characteristics. A random forest classifier showed chance-level discrimination between patients and controls. The random forest regression explained 23% variance in positive symptom reduction after treatment in the patient group. In conclusion, in this largest antipsychotic- naïve EEG sample to date in FEP patients, we found no differences in macroscale EEG characteristics between patients with FEP and healthy controls. However, these EEG characteristics did show predictive value for positive symptom reduction following treatment with antipsychotic medication.