Login / Signup

Selective Three-Component Coupling for CO2 Chemical Fixation to Boron Guanidinato Compounds.

Sonia MorenoAlberto RamosFernando Carrillo-HermosillaAntonio Rodríguez-DiéguezDaniel García-VivóRafael Fernández-GalánAntonio Antiñolo
Published in: Inorganic chemistry (2018)
A selective three-component coupling was employed to fix carbon dioxide to boron guanidinato compounds. The one-pot reaction of carbon dioxide, carbodiimides, and borylamines (ArNH)BC8H14 afforded the corresponding 1,2-adducts {R(H)N}C{N(Ar)}(NR)(CO2)BC8H14. Alternatively, the reaction with p-MeOC6H4NC or 2,6-Me2C6H3NC gave the corresponding isocyanide 1,1-adducts { i-PrHN}C{N(p-Me-C6H4)}(N i-Pr){CNAr}BC8H14. The molecular structures of products (2,6- i-Pr2C6H3NH)BC8H14 7, { i-Pr(H)N}C{N(p-MeC6H4)}(N i-Pr)(CO2)BC8H14 9, {Cy(H)N}C{N( p-MeC6H4)}(Cy)(CO2)BC8H14 13, and { i-PrHN}C{N( p-MeC6H4)}(N i-Pr){CNR″}BC8H14 (R″ = p-MeOC6H4, 2,6-Me2C6H3) 14 and 15 were established by X-ray diffraction. Density functional theory calculations at the M05-2X level of theory revealed that CO2 fixation and formation of the corresponding adduct is exothermic and proceeds via a nonchelate boron guanidinato intermediate.
Keyphrases
  • carbon dioxide
  • density functional theory
  • molecular dynamics
  • minimally invasive
  • high resolution
  • magnetic resonance
  • magnetic resonance imaging
  • mass spectrometry
  • electron transfer