Login / Signup

One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA.

Yi-Yan BaiZhen WuChun-Miao XuLi ZhangJiao FengDai-Wen PangZhi-Ling Zhang
Published in: Analytical chemistry (2019)
Single-entity electrochemistry (SEEC), a promising method for biosensing, has an intrinsic limitation on sensitivity since at most one colliding entity can be successfully triggered by one target. Here, we take advantage of one-to-many (1:n) signal amplification to develop a new single-entity electrochemistry biosensing (SEECBS), integrating satellite magnetic nanoparticle (MN)-DNA-Pt nanoparticle (NP) conjugates, duplex-specific nuclease (DSN) assisted Pt NPs releasing with stabilization, and effective collision of small sized and nearly naked Pt NPs. Compared with conventional SEECBS, the 1:n SEECBS can successfully enrich ∼2 nM Pt NPs by adding 50 aM microRNA (miRNA), in other words, ∼4 × 107 Pt NPs can be triggered by one target. The proposed SEECBS allows the detection of 47 aM miRNA-21, nearly 6 orders of magnitude lower than the previous work, and discrimination of nontarget miRNAs containing even single-nucleotide mismatch. Besides, this method has also been successfully demonstrated for quantification of miRNA in different cell lines. Therefore, the proposed method holds great potential for the application of SEECBS in early diagnosis and prognosis monitoring of cancer.
Keyphrases