Login / Signup

Structural Changes Induced by Quinones: High-Resolution Microwave Study of 1,4-Naphthoquinone.

Shefali SaxenaSanjana PanchagnulaMaria Eugenia SanzCristóbal PérezLuca EvangelistiBrooks H Pate
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
1,4-Naphthoquinone (1,4-NQ) is an important product of naphthalene oxidation, and it appears as a motif in many biologically active compounds. We have investigated the structure of 1,4-NQ using chirped-pulse Fourier transform microwave spectroscopy and quantum chemistry calculations. The rotational spectra of the parent species, and its 13 C and 18 O isotopologues were observed in natural abundance, and their spectroscopic parameters were obtained. This allowed the determination of the substitution rs , mass-weighted rm and semi-experimental re SE structures of 1,4-NQ. The obtained structural parameters show that the quinone moiety mainly changes the structure of the benzene ring where it is inserted, modifying the C-C bonds to having predominantly single or double bond character. Furthermore, the molecular electrostatic surface potential reveals that the quinone ring becomes electron deficient while the benzene ring remains a nucleophile. The most electrophilic areas are the hydrogens attached to the double bond in the quinone ring. Knowledge of the nucleophilic and electrophilic areas in 1,4-NQ will help understanding its behaviour interacting with other molecules and guide modifications to tune its properties.
Keyphrases