Login / Signup

Extreme active matter at high densities.

Rituparno MandalPranab Jyoti BhuyanPinaki ChaudhuriChandan DasguptaMadan Rao
Published in: Nature communications (2020)
We study the remarkable behaviour of dense active matter comprising self-propelled particles at large Péclet numbers, over a range of persistence times, from τp → 0, when the active fluid undergoes a slowing down of density relaxations leading to a glass transition as the active propulsion force f reduces, to τp → ∞, when as f reduces, the fluid jams at a critical point, with stresses along force-chains. For intermediate τp, a decrease in f drives the fluid through an intermittent phase before dynamical arrest at low f. This intermittency is a consequence of periods of jamming followed by bursts of plastic yielding associated with Eshelby deformations. On the other hand, an increase in f leads to an increase in the burst frequency; the correlated plastic events result in large scale vorticity and turbulence. Dense extreme active matter brings together the physics of glass, jamming, plasticity and turbulence, in a new state of driven classical matter.
Keyphrases
  • single molecule
  • cell cycle
  • high frequency
  • high intensity