Identification and immune analysis of antimicrobial peptides from the cigarette beetle (Lasioderma serricorne).
Yue ZhangYi YanGuy SmaggheHong YangRen-Huai DaiWen-Jia YangPublished in: Insect science (2023)
Antimicrobial peptides (AMPs) in insects are endogenous peptides that are effector components of the innate defense system of the insect. AMPs may serve as antimicrobial agents because of their small molecular weight and broad-spectrum antimicrobial activity. In this study, we performed transcriptome analysis of cigarette beetle (Lasioderma serricorne) larvae, parasitized by the ectoparasitic wasp, Anisopteromalus calandrae. Several AMP genes were significantly upregulated following A. calandrae parasitism, postulating the hypothesis that the parasitization enhanced the host's resistance against pathogenic microorganisms through the regulation of host AMP genes. Specifically, 3 AMP genes (LsDef1, LsDef2, and LsCole) were significantly upregulated and we studied their immune function in L. serricorne. Immune challenge and functional analysis showed that LsCole was responsible for the immune response against Gram-negative and Gram-positive bacteria, while LsDef1 and LsDef2 were involved in insect defense against Gram-positive bacteria. Purified recombinant LsCole exhibited antimicrobial activities against the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. LsDef2 showed an antibacterial effect against S. aureus. LsCole and LsDef2 exhibited antibiofilm activity against S. aureus. The 2 AMPs disrupted cell membranes and caused leakage of S. aureus cell contents. The results indicated that the 3 AMPs in L. serricorne are involved in the innate immunity of this pest insect. These AMPs may have potential as antimicrobial agents for bacterial infection chemotherapy. Hence, data are discussed in relation to new control strategies with greater biosafety against pest insects with use of microbial biocontrol agents in combination with RNA interference against the insect's defensive AMP genes.
Keyphrases
- gram negative
- multidrug resistant
- staphylococcus aureus
- genome wide
- immune response
- protein kinase
- bioinformatics analysis
- aedes aegypti
- escherichia coli
- single cell
- genome wide identification
- klebsiella pneumoniae
- cell therapy
- dna methylation
- biofilm formation
- gene expression
- smoking cessation
- rna seq
- dendritic cells
- regulatory t cells
- transcription factor
- bone marrow
- toll like receptor
- climate change
- mesenchymal stem cells
- big data
- candida albicans
- methicillin resistant staphylococcus aureus
- inflammatory response
- electronic health record
- locally advanced
- amino acid
- human health