Login / Signup

High energy resolution CsPbBr 3 alpha particle detector with a full-customized readout application specific integrated circuit.

Xin ZhangRuichen BaiYuhao FuYingying HaoXinkai PengJia WangBangzhi GeJianxi LiuYongcai HuXiaoping OuyangWanqi JieYadong Xu
Published in: Nature communications (2024)
α particles must be monitored to be managed as radioactive diagnostic agents or nuclear activity indicators. The new generation of perovskite detectors suffer from limited energy resolution, which affects spectroscopy and imaging applications. Here, we report that the solution-grown CsPbBr 3 crystal exhibits a low and stable dark current (34.6 nA·cm -2 at 200 V) by thinning the as-grown crystal to decrease the high concentration CsPb 2 Br 5 phase near the surface. The introduction of the Schottky electrode for the CsPbBr 3 detector further reduces the dark current and improves the high-temperature stability. An energy resolution of 6.9% is achieved with the commercial electronic system, while the effects of air scattering and absorption are investigated. Moreover, 1.1% energy resolution is recognized by a full-customized readout application-specific integrated circuit without any additional signal processing, which matches well with the given parameters of the CsPbBr 3 detector by reducing the parasitic capacitance and electronic noise.
Keyphrases
  • single molecule
  • solid state
  • high temperature
  • high resolution
  • image quality
  • atomic force microscopy
  • monte carlo
  • mass spectrometry
  • high speed
  • photodynamic therapy
  • solar cells