Role of Nickel Nanoparticles in High-Performance TiO2 /Ni/Carbon Nanohybrid Lithium/Sodium-Ion Battery Anodes.
Xiaoyan WangDong ZhaoChao WangYonggao XiaWenshuai JiangSenlin XiaShanshan YinXiuxia ZuoEzzeldin MetwalliYing XiaoZaicheng SunJin ZhuPeter Müller-BuschbaumYa-Jun ChengPublished in: Chemistry, an Asian journal (2019)
Super-small sized TiO2 nanoparticles are in situ co-composited with carbon and nickel nanoparticles in a facile scalable way, using difunctional methacrylate monomers as solvent and carbon source. Good control over crystallinity, morphology, and dispersion of the nanohybrid is achieved because of the thermosetting nature of the resin polymer. The effects of the nickel nanoparticle on the composition, crystallographic phase, structure, morphology, tap density, specific surface area, and electrochemical performance as both lithium-ion and sodium-ion battery anodes are systematically investigated. It is found that the incorporation of the in situ formed nickel nanoparticles with certain content effectively enhances the electrochemical performance including reversible capacities, cyclic stability and rate performance as both lithium-ion and sodium-ion battery anodes. The experimental I-V profiles at different temperatures and theoretical calculations reveal that the charge carriers are accumulated in the amorphous carbon regions, which act as scattering centers to the carriers and lower the carrier mobility for the composite. With increasing nickel content, the mobility of the charge carriers is significantly increased, while the number of the charge carriers maintains almost constant. The nickel nanoparticles provide extra pathways for the accumulated charge, leading to reduced scatterings among the charge carriers and enhanced charge-carrier transportation.