Login / Signup

B7 Liquid Crystal Filament Growth in Presence of Carbon Nanotubes.

O StamatoiuDr Ingo Dierking
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2018)
Liquid crystal phases formed from bent-core mesogens have attracted much interest of the liquid crystal research community, due to the manifestation of chirality effects from achiral molecules. One of the most elusive of the bent-core phases is the B7 phase, which at its early stage often forms in a helical filament fashion. We investigate the growth of such filaments in the presence of single-walled nanotubes to elucidate possible effects on the growth dynamics and helicity of B7 helical filaments. It is found that the filament width slightly decreases in comparison to the neat B7 material, suggesting a more tightly bound structure around the nanotubes, with the nanotubes likely acting as the core of the helical filament. No effects on pitch or periodicity of the helical superstructure is observed. The filament growth velocity quickly decreases as nanotubes are added to the B7 phase, indicating that a more tightly bound structure needs a longer time of formation. An observed buckling instability is of interest as a microscopic example for the study of nonlinear dynamics theories of filaments. The present investigation is thus of general importance for nanoparticle directed growth of filaments, which has applications in biomolecular growth and high tensile strength fibres.
Keyphrases
  • early stage
  • healthcare
  • carbon nanotubes
  • magnetic resonance imaging
  • mental health
  • radiation therapy
  • blood flow
  • locally advanced