Transport coefficient approach for characterizing nonequilibrium dynamics in soft matter.
HongRui HeHeyi LiangMiaoqi ChuZhang JiangJuan J de PabloMatthew V TirrellSuresh NarayananWei ChenPublished in: Proceedings of the National Academy of Sciences of the United States of America (2024)
Nonequilibrium states in soft condensed matter require a systematic approach to characterize and model materials, enhancing predictability and applications. Among the tools, X-ray photon correlation spectroscopy (XPCS) provides exceptional temporal and spatial resolution to extract dynamic insight into the properties of the material. However, existing models might overlook intricate details. We introduce an approach for extracting the transport coefficient, denoted as [Formula: see text], from the XPCS studies. This coefficient is a fundamental parameter in nonequilibrium statistical mechanics and is crucial for characterizing transport processes within a system. Our method unifies the Green-Kubo formulas associated with various transport coefficients, including gradient flows, particle-particle interactions, friction matrices, and continuous noise. We achieve this by integrating the collective influence of random and systematic forces acting on the particles within the framework of a Markov chain. We initially validated this method using molecular dynamics simulations of a system subjected to changes in temperatures over time. Subsequently, we conducted further verification using experimental systems reported in the literature and known for their complex nonequilibrium characteristics. The results, including the derived [Formula: see text] and other relevant physical parameters, align with the previous observations and reveal detailed dynamical information in nonequilibrium states. This approach represents an advancement in XPCS analysis, addressing the growing demand to extract intricate nonequilibrium dynamics. Further, the methods presented are agnostic to the nature of the material system and can be potentially expanded to hard condensed matter systems.
Keyphrases
- molecular dynamics simulations
- diffusion weighted imaging
- oxidative stress
- high resolution
- systematic review
- smoking cessation
- single molecule
- mental health
- healthcare
- human milk
- genome wide
- air pollution
- anti inflammatory
- living cells
- computed tomography
- single cell
- health information
- magnetic resonance imaging
- low birth weight