Resonant vibrations produce quantum bridge over high-energy states in heterogeneous antenna.
Vladimir I NovoderezhkinPublished in: Photosynthesis research (2023)
Photosynthetic light-harvesting complexes usually contain several pools of molecules with a big difference in transition energies, for example, chlorophylls a and b in plant antennas. Some pathways of the excitation energy transfer may include pigments from the low-energy pool separated by a site occupied by a high-energy molecule. We demonstrate that such pathways may be functional if high-frequency intramolecular vibrations fall in resonance with the energy gap between the neighboring molecules belonging to different pools. In this case, a vibration-assisted mixing of the excited states can produce delocalized vibronic states playing a role of 'quantum bridge' that facilitates a passage over high-energy barrier. We perform calculations of the excitation dynamics in the model three-state system with the parameters emerging from our previous studies of real antennas. Simulation of the dynamics in an explicit electron-vibrational basis demonstrates that the rate of transfer between the two chlorophylls a through the chlorophyll b intermediate is increased by a factor of 1.7-2 in the presence of resonant vibration. A possible influence of energetic disorder and other (non-resonant) vibrations on this effect is discussed.