Login / Signup

Temporal adaptation of sensory attenuation for self-touch.

Clara FritzEckart Zimmermann
Published in: Experimental brain research (2023)
The sensory consequences of our actions appear attenuated to us. This effect has been reported for external sensations that are evoked by auditory or visual events and for body-related sensations which are produced by self-touch. In the present study, we investigated the effects of prolonged exposure to a delay between an action and the generated sensation on sensory attenuation for self-touch. Previously, it has been shown that after being presented to a systematic exposure delay, artificially delayed touch can feel more intense and non-delayed touches can appear less intense. Here, we investigated the temporal spread of the temporal recalibration effect. Specifically, we wondered whether this temporal recalibration effect would affect only the delay that was used during exposure trials or if it would also modulate longer test delays. In the first two experiments, we tested three test delays (0, 100 and 400 ms) either in randomized or in blocked order. We found sensory attenuation in all three test intervals but no effect of the exposure delay. In Experiment 3, we replicated the experiment by Kilteni et al. (ELife 8:e42888, 2019. https://doi.org/10.7554/eLife.42888 ) and found evidence for temporal recalibration by exposure delay. Our data show that the temporal selectivity of sensory attenuation of self-touch depends on presenting a singular test delay only. Presenting multiple test delays leads to a temporally broad spread of sensory attenuation.
Keyphrases
  • multiple sclerosis
  • clinical trial
  • mass spectrometry
  • open label
  • case report
  • big data
  • artificial intelligence
  • deep learning
  • placebo controlled
  • high speed