Login / Signup

A deletion in FLS2 and its expansion after domestication caused global dissemination of melon cultivars defective in flagellin recognition.

Chujia JinHiroki MatsuoYoshizo NakayamaGentaro ShigitaYoshihiro InoueKenji KatoYoshitaka Takano
Published in: The Plant journal : for cell and molecular biology (2024)
FLAGELLIN SENSING 2 (FLS2) encodes a pattern recognition receptor that perceives bacterial flagellin. While putative FLS2 orthologs are broadly conserved in plants, their functional characterization remains limited. Here, we report the identification of orthologs in cucumber (Cucumis sativus) and melon (C. melo), named CsFLS2 and CmFLS2, respectively. Homology searching identified CsFLS2, and virus-induced gene silencing (VIGS) demonstrated that CsFLS2 is required for flg22-triggered ROS generation. Interestingly, genome re-sequencing of melon cv. Lennon and subsequent genomic PCR revealed that Lennon has two CmFLS2 haplotypes, haplotype I encoding full-length CmFLS2 and haplotype II encoding a truncated form. We show that VIGS-mediated knockdown of CmFLS2 haplotype I resulted in a significant reduction in both flg22-triggered ROS generation and immunity to a bacterial pathogen in melon cv. Lennon. Remarkably, genomic PCR of CmFLS2 revealed that 68% of tested commercial melon cultivars possess only CmFLS2 haplotype II: these cultivars thus lack functional CmFLS2. To explore evolutionary aspects of CmFLS2 haplotype II occurrence, we genotyped the CmFLS2 locus in 142 melon accessions by genomic PCR and analyzed 437 released sequences. The results suggest that CmFLS2 haplotype II is derived from C. melo subsp. melo. Furthermore, we suggest that the proportion of CmFLS2 haplotype II increased among the improved melo group compared with the primitive melo group. Collectively, these findings suggest that the deleted FLS2 locus generated in the primitive melo subspecies expanded after domestication, resulting in the spread of commercial melon cultivars defective in flagellin recognition, which is critical for bacterial immunity.
Keyphrases
  • single cell
  • copy number
  • genome wide
  • reactive oxygen species
  • dna methylation
  • oxidative stress
  • diabetic rats