Reversal of cisplatin sensitization and abrogation of cisplatin-enriched cancer stem cells in 5-8F nasopharyngeal carcinoma cell line through a suppression of Wnt/β-catenin-signaling pathway.
Sirorut SinnungTavan JanvilisriPichamon KiatwuthinonPublished in: Molecular and cellular biochemistry (2021)
Nasopharyngeal carcinoma (NPC) is one of the rare cancers in western countries but predominant in Southeast Asian countries including Thailand. One major cause for failure of NPC chemotherapeutic treatments is reportedly correlated with the elevation of cancer stem cell (CSC) fractions. Thus, this present study aims to investigate the effect of cisplatin (CDDP) treatment on the enrichment of cancer stem-like cells (CSCs) and its associated signaling pathway in EBV-negative NPC cells. Cisplatin-pretreated 5-8F NPC cells (5-8F CDDP) were first generated by treating the cells with 0.5 μM cisplatin for 48 h. After the instant treatment, 5-8F CDDP showed increased IC50 values, demonstrating a decrease in CDDP sensitization. Besides, the proportion of NPC cells with cancer stem-like phenotypes comprising side population (SP), key stemness-related gene expressions including SOX2, ALDH1, CD24 was significantly enhanced. Additionally, 5-8F CDDP displayed the upregulation of β-catenin gene, suggesting its association with the CSC-initiating mechanism. Furthermore, a tankyrase inhibitor for Wnt/β-catenin pathway, XAV939, substantially reduced CSCs and retrieved the cisplatin sensitivity in 5-8F CDDP. This confirms that the Wnt/β-catenin signaling is accountable for rising of the CSC population in EBV-negative NPC. Finally, the combined treatment of CDDP and XAV939 exhibited lower 5-8F CDDP cell viability compared to the treatment of CDDP alone, suggesting the reversal of cisplatin sensitization. In conclusion, the enhancement of CSCs in 5-8F NPC cells caused by the instant cisplatin treatment is initially mediated through the upregulation of β-catenin and activation of Wnt/β-catenin signaling pathway. As a result, a primary chemotherapeutic treatment with closely monitoring the targeted Wnt/β-catenin signaling pathway could potentially prevent the development of CSCs and improve the treatment efficiency in NPC.