Login / Signup

Computational Approaches to the Electronic Properties of Noble Metal Nanoclusters Protected by Organic Ligands.

Francesco Muniz-Miranda
Published in: Nanomaterials (Basel, Switzerland) (2021)
Organometallic nanoparticles composed by metal cores with sizes under two nanometers covered with organic capping ligands exhibit intermediate properties between those of atoms and molecules on one side, and those of larger metal nanoparticles on the other. In fact, these particles do not show a peculiar metallic behavior, characterized by plasmon resonances, but instead they have nonvanishing band-gaps, more along molecular optical properties. As a consequence, they are suitable to be described and investigated by computational approaches such as those used in quantum chemistry, for instance those based on the time-dependent density functional theory (TD-DFT). Here, I present a short review of the research performed from 2014 onward at the University of Modena and Reggio Emilia (Italy) on the TD-DFT interpretation of the electronic spectra of different organic-protected gold and/or silver nanoclusters.
Keyphrases
  • density functional theory
  • molecular dynamics
  • energy transfer
  • water soluble
  • sensitive detection
  • gold nanoparticles
  • silver nanoparticles
  • fluorescent probe
  • atomic force microscopy
  • mass spectrometry
  • single molecule