Login / Signup

Chemically Modified Carbon Nanohorns as Nanovectors of the Cisplatin Drug: A Molecular Dynamics Study.

Eduardo R AlmeidaLeonardo A De SouzaWagner B De AlmeidaHélio F Dos Santos
Published in: Journal of chemical information and modeling (2019)
Carbon nanohorns (CNH) have been considered potential anticancer drug carriers, such as the cisplatin drug (cddp), due to their low toxicity, high purity, drug-loading capacity, and biodegradation routes. However, when it comes to nanomedicine applications, chemical functionalization is an essential step in order to overcome undesirable properties of these nanomaterials, such as the high hydrophobicity, low reactivity, and low dispersibility in polar solvents. In this context, the present study involved the modeling of new CNH topologies based on chemical oxidation and reduction mechanisms and the investigation of the influence of these modified structures on the dynamics and stability of inclusion complexes with cddp. The results indicated that these functionalization strategies lead to the opening of nanowindows on the CNH surfaces, which would constitute the main route for drug release, as reported by experimentalists. Also, our results showed that the insertion of polar functional groups on the oxidized CNH (CNHox-N) contributed to an improvement of the cddp@CNHox-N biocompatibility due to the greater number of hydrogen bonds formed with the solvent. Despite the favorable formation of all complexes, the binding free energies pointed out that the oxidation process made the cddp@CNHox-N complexes slightly less stable than the ones with pristine and reduced CNH. Besides, the results suggest the possibility to tune the complex stability by controlling the oxidation degree, which could be explored by the experimentalists in order to design controlled drug delivery systems based on CNH nanocarriers.
Keyphrases