Login / Signup

Microheterogeneous Distribution of Hydroxyl Radicals in Illuminated Dissolved Organic Matter Solutions.

Shuwen YanJiaqian SunHaitao ShaQi LiJianxin NieJianmin ZouChiheng ChuWeihua Song
Published in: Environmental science & technology (2021)
Hydroxyl radicals (•OH) are important reactive species that are photochemically generated through solar irradiation of chromophoric dissolved organic matter (CDOM) in surface waters. However, the spatial distribution within the complex three-dimensional structure of CDOM has not been examined. In this study, we used a series of hydrophobic chlorinated paraffins as chemical probes to elucidate the microheterogeneous distribution of •OH in illuminated CDOM solutions. The steady-state concentration of •OH inside the CDOM microphase is 210 ± 31-fold higher than the concentration in the aqueous phase. Our results suggest that the most photochemically generated •OH are confined into the CDOM microphase. Thus, illuminated CDOM behaves as a natural microreactor for •OH-based oxidations. By including intra-CDOM •OH, the quantum yield of •OH for CDOM solutions was estimated to be 2.2 ± 0.5 × 10-3, which is 2 orders of magnitude greater than previously thought. The elevated concentrations of photogenerated •OH within the CDOM microphase may improve the understanding of hydrophobic pollutant degradation in aqueous environments. Moreover, our results also suggest that •OH oxidation may play more important roles in the phototransformation of CDOM than previously expected.
Keyphrases
  • ionic liquid
  • radiation therapy
  • hydrogen peroxide
  • single molecule
  • fluorescence imaging
  • fluorescent probe