Real-Time Detection of Glyphosate by a Water-Gated Organic Field-Effect Transistor with a Microfluidic Chamber.
Koichiro AsanoPierre DidierKohei OhshiroNicolas Lobato-DauzierAnthony J GenotTsukuru MinamikiTeruo FujiiTsuyoshi MinamiPublished in: Langmuir : the ACS journal of surfaces and colloids (2021)
This paper reports the development of a real-time monitoring system utilizing the combination of a water-gated organic field-effect transistor (WG-OFET) and a microfluidic chamber for the detection of the herbicide glyphosate (GlyP). For the realization of the real-time sensing with the WG-OFET, the surface of a polymer semiconductor was utilized as a sensing unit. The aqueous solution including the target analyte, which is employed as a gate dielectric of the WG-OFET, flows into a designed microfluidic chamber on the semiconductor layer and the gate electrode. As the sensing mechanism, the WG-OFET-based sensor utilizes the competitive complexation among carboxylate-functionalized polythiophene, a copper(II) (Cu2+) ion, and GlyP. The reversible accumulation and desorption of the positively charged Cu2+ ion on the semiconductor surface induced a change in the electrical double-layer capacitance (EDLC). The optimization of the microfluidic chamber enables a uniform water flow and contributes to real-time quantitative sensing of GlyP at a micromolar level. Thus, this study would lead to practical real-time sensing in water for various fields including environmental assessment.