Login / Signup

BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity.

Mahendra P KashyapSubrata K PoreWilliam C de GroatChristopher J ChermanskyNaoki YoshimuraPradeep Tyagi
Published in: American journal of physiology. Renal physiology (2017)
Elevated levels of brain-derived neurotrophic factor (BDNF) in urine of overactive bladder (OAB) patients support the association of BDNF with OAB symptoms, but the causality is not known. Here, we investigated the functionality of BDNF overexpression in rat bladder following bladder wall transfection of either BDNF or luciferase (luciferase) transgenes (10 µg). One week after transfection, BDNF overexpression in bladder tissue and elevation of urine BDNF levels were observed together with increased transcript of BDNF, its cognate receptors (TrkB and p75NTR), and downstream PLCγ isoforms in bladder. BDNF overexpression can induce the bladder overactivity (BO) phenotype which is demonstrated by the increased voiding pressure and reduced intercontractile interval during transurethral open cystometry under urethane anesthesia. A role for BDNF-mediated enhancement of prejunctional cholinergic transmission in BO is supported by the significant increase in the atropine- and neostigmine-sensitive component of nerve-evoked contractions and upregulation of choline acetyltransferase, vesicular acetylcholine transporter, and transporter Oct2 and -α1 receptors. In addition, higher expression of transient receptor channels (TRPV1 and TRPA1) and pannexin-1 channels in conjunction with elevation of ATP and neurotrophins in bladder and also in L6/S1 dorsal root ganglia together support a role for sensitized afferent nerve terminals in BO. Overall, genomic changes in efferent and afferent neurons of bladder induced by the overexpression of BDNF per se establish a mechanistic link between elevated BDNF levels in urine and dysfunctional voiding observed in animal models and in OAB patients.
Keyphrases