Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries.
Wen ZhangSiwei GuiWanming LiShuibin TuGuocheng LiYun ZhangYongming SunJingying XieHuamin ZhouHui YangPublished in: ACS applied materials & interfaces (2022)
Silicon (Si) is regarded as one of the most promising anode materials for high-energy-density lithium (Li)-ion batteries (LIBs). However, Li insertion/extraction induced large volume change, which can lead to the fracture of the Si material itself and the delamination/pulverization of electrodes, is the major challenge for the practical application of Si-based anodes. Herein, a facile and scalable multilayer coating approach was proposed for the large-scale fabrication of functionally gradient Si/graphite (Si/Gr) composite electrodes to simultaneously mitigate the volume change-caused structural degradation and realize high capacity by regulating the spatial distributions of Si and Gr particles in the electrodes. Both our experimental characterizations and chemomechanical simulations indicated that, with a parabolic gradient (PG) distribution of Si through the thickness direction that the two Si-poor surface layers guarantee the major mechanical support and the middle Si-rich layer ensures the high capacity, the as-prepared PG-Si/Gr electrode can not only effectively improve the stability of the electrode structure but also efficiently enable high capacity and stable electrochemical reactions. Consequently, the PG-Si/Gr electrode with a mass loading of 3.15 mg cm -2 exhibited a reversible capacity of 579.2 mAh g -1 (1.82 mAh cm -2 ) after 200 cycles at 0.2C. Even with a mass loading of 8.45 mg cm -2 , the PG-Si/Gr anodes still delivered a high reversible capacity of 4.04 mAh cm -2 after 100 cycles and maintained excellent cycling stability. Moreover, when paired with a commercial LiNi 0.5 Mn 0.3 Co 0.2 O 2 (NCM532) cathode (9.56 mg cm -2 ), the PG-Si/Gr||NCM532 full cell revealed an initial reversible areal capacity of 1.64 mAh cm -2 and sustained a stable areal capacity of 0.94 mAh cm -2 at 0.2C after 100 cycles.