Login / Signup

Biohybrid Urchin-Like ZnO-Based Microspheres with Tunable Hierarchical Structures and Enhanced Photoelectrocatalytic Properties.

Hui ZhouJun CaiBo GuDeyuan ZhangDe Gong
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Microorganisms have attracted much attention to act as biotemplates for fabricating micro/nanostructured functional particles. However, it is still challenging to produce tunable hierarchical particles based on microorganisms with intricate architectures and superior stability. Herein, a novel strategy is developed to fabricate biohybrid urchin-like magnetic ZnO microspheres based on Chlorella (Ch.) with tunable hierarchical core-shell structures. Using Ch. cells as microspherical templates, Fe 3 O 4 nanoparticles and ZnO nanorod (NR) arrays are deposited in sequence to form the final biohybrid heterostructure microspheres (Ch.@Fe 3 O 4 @ZnO NRs). Ordered growth and structural regulation of 3D ZnO NR arrays are achieved via a facile and controllable manner. Compared with the prepared microspheres with diverse structure configurations of ZnO shells, the Ch.@Fe 3 O 4 @ZnO NRs possess excellent light absorption and photoelectrocatalysis performance toward tetracycline degradation (normalized apparent rate constant, k = 366.3 h -1 g -1 ), which is significantly larger than that of ZnO nanoflower/nanoparticle loaded types. It also proves that the synergistic enhancement of well-oriented ZnO NR arrays, heterojunction structures, and biomass features is the fundamental reason for outstanding photoelectrocatalytic activity. Due to the remarkable stability and versatility, this work provides abundant opportunities to construct biohybrid multilevel micro/nanostructures with significant potentials for practical applications.
Keyphrases
  • room temperature
  • visible light
  • quantum dots
  • reduced graphene oxide
  • light emitting
  • ionic liquid
  • molecularly imprinted
  • high resolution
  • gold nanoparticles
  • computed tomography
  • cell proliferation
  • mass spectrometry