Login / Signup

Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing.

Saikrishna Reddy KonathamReza MaramLuis Romero CortésJun Ho ChangLeslie RuschSophie LaRochelleHugues Guillet de ChatellusJosé Azaña
Published in: Nature communications (2020)
Real-time tracking of a waveform frequency content is essential for detection and analysis of fast rare events in communications, radar, radio astronomy, spectroscopy, sensing etc. This requires a method that can provide real-time spectrum analysis (RT-SA) of high-speed waveforms in a continuous and gap-free fashion. Digital signal processing is inefficient to perform RT-SA over instantaneous frequency bandwidths above the sub-GHz range and/or to track spectral changes faster than a few microseconds. Analog dispersion-induced frequency-to-time mapping enables RT-SA of short isolated pulse-like signals but cannot be extended to continuous waveforms. Here, we propose a universal analog processing approach for time-mapping a gap-free spectrogram -the prime method for dynamic frequency analysis- of an incoming arbitrary waveform, based on a simple sampling and dispersive delay scheme. In experiments, the spectrograms of GHz-bandwidth microwave signals are captured at a speed of ~5×109 Fourier transforms per second, allowing to intercept nanosecond-duration frequency transients in real time. This method opens new opportunities for dynamic frequency analysis and processing of high-speed waveforms.
Keyphrases
  • high speed
  • high resolution
  • atomic force microscopy
  • blood pressure
  • magnetic resonance imaging
  • high density