Login / Signup

Wear patterns and dental functioning in an Early Cretaceous stegosaur from Yakutia, Eastern Russia.

Pavel P SkutschasVera A GvozdkovaAlexander O AverianovAlexey V LopatinThomas MartinRico SchellhornPetr N KolosovValentina D MarkovaVeniamin V KolchanovDmitry V GrigorievIvan T KuzminDmitry D Vitenko
Published in: PloS one (2021)
Isolated stegosaurian teeth from the Early Cretaceous high-latitude (palaeolatitude estimate of N 62°- 66.5°) Teete locality in Yakutia (Eastern Siberia, Russia) are characterized by a labiolingually compressed, slightly asymmetrical and mesiodistally denticulated (9-14 denticles) crown, a pronounced ring-like cingulum, as well as a "complex network of secondary ridges". The 63 teeth (found during on-site excavation in 2012, 2017-2019 and screen-washing in 2017-2019) most likely belong to one species of a derived (stegosaurine) stegosaur. Most of the teeth exhibit a high degree of wear and up to three wear facets has been observed on a single tooth. The prevalence of worn teeth with up to three wear facets and the presence of different types of facets (including steeply inclined and groove-like) indicate the tooth-tooth contact and precise dental occlusion in the Teete stegosaur. The microwear pattern (mesiodistally or slightly obliquely oriented scratches; differently oriented straight and curved scratches on some wear facets) suggest a complex jaw mechanism with palinal jaw motion. Histological analysis revealed that the Teete stegosaur is characterized by relatively short tooth formation time (95 days) and the presence of a "wavy enamel pattern". Discoveries of a "wavy enamel pattern" in the Teete stegosaur, in a Middle Jurassic stegosaur from Western Siberia, and in the basal ceratopsian Psittacosaurus, suggest that this histological feature is common for different ornithischian clades, including ornithopods, marginocephalians, and thyreophorans. A juvenile tooth in the Teete sample indicates that stegosaurs were year-round residents and reproduced in high latitudes. The combination of high degree of tooth wear with formation of multiple wear facets, complex jaw motions, relatively short tooth formation time and possibly high tooth replacement rates is interpreted as a special adaptation for a life in high-latitude conditions or, alternatively, as a common stegosaurian adaptation making stegosaurs a successful group of herbivorous dinosaurs in the Middle Jurassic-Early Cretaceous and enabeling them to live in both low- and high-latitude ecosystems.
Keyphrases
  • south africa
  • risk factors
  • deep learning
  • mass spectrometry
  • high throughput