Decellularized Bone Matrix/45S5 Bioactive Glass Biocomposite Hydrogel-Based Constructs with Angiogenic and Osteogenic Properties: Ex Ovo and Ex Vivo Evaluations.
Ekin AytekinMurat Taner VuratAyşe Eser ElçinYaşar Murat ElçinPublished in: Macromolecular bioscience (2023)
Decellularized extracellular matrix is often used to create an in vivo-like environment that supports cell growth and proliferation, as it reflects the micro/macrostructure and molecular composition of tissues. On the other hand, bioactive glasses (BG) are surface-reactive glass-ceramics that can convert to hydroxyapatite in vivo and promote new bone formation. This study is designed to evaluate the key properties of a novel angiogenic and osteogenic biocomposite graft made of bovine decellularized bone matrix (DBM) hydrogel and 45S5 BG microparticles (10 and 20 wt%) to combine the existing superior properties of both biomaterial classes. Morphological, physicochemical, mechanical, and thermal characterizations of DBM and DBM/BG composite hydrogels are performed. Their in vitro biocompatibility is confirmed by cytotoxicity and hemocompatibility analyses. Ex vivo chick embryo aortic arch and ex ovo chick chorioallantoic membrane (CAM) assays reveal that the present pro-angiogenic property of DBM hydrogels is enhanced by the incorporation of BG. Histochemical stainings (Alcian blue and Alizarin red) and digital image analysis of ossification on hind limbs of embryos used in the CAM model reveal the osteogenic potential of biomaterials. The findings support the notion that the developed DBM/BG composite hydrogel constructs have the potential to be a suitable graft for bone repair.
Keyphrases
- tissue engineering
- extracellular matrix
- mesenchymal stem cells
- bone mineral density
- bone marrow
- bone regeneration
- soft tissue
- bone loss
- drug delivery
- genome wide
- gene expression
- single cell
- human health
- signaling pathway
- postmenopausal women
- risk assessment
- high throughput
- body composition
- climate change
- pregnant women
- machine learning