Login / Signup

Mild Paravalvular Leak May Pose an Increased Thrombogenic Risk in Transcatheter Aortic Valve Replacement (TAVR) Patients-Insights from Patient Specific In Vitro and In Silico Studies.

Brandon J KovarovicOren M RotmanPuja B ParikhMarvin J SlepianDanny Bluestein
Published in: Bioengineering (Basel, Switzerland) (2023)
In recent years, the treatment of aortic stenosis with TAVR has rapidly expanded to younger and lower-risk patients. However, persistent thrombotic events such as stroke and valve thrombosis expose recipients to severe clinical complications that hamper TAVR's rapid advance. We presented a novel methodology for establishing a link between commonly acceptable mild paravalvular leak (PVL) levels through the device and increased thrombogenic risk. It utilizes in vitro patient-specific TAVR 3D-printed replicas evaluated for hydrodynamic performance. High-resolution µCT scans are used to reconstruct in silico FSI models of these replicas, in which multiple platelet trajectories are studied through the PVL channels to quantify thrombogenicity, showing that those are highly dependent on patient-specific flow conditions within the PVL channels. It demonstrates that platelets have the potential to enter the PVL channels multiple times over successive cardiac cycles, increasing the thrombogenic risk. This cannot be reliably approximated by standard hemodynamic parameters. It highlights the shortcomings of subjectively ranked PVL commonly used in clinical practice by indicating an increased thrombogenic risk in patient cases otherwise classified as mild PVL. It reiterates the need for more rigorous clinical evaluation for properly diagnosing thrombogenic risk in TAVR patients.
Keyphrases