Login / Signup

Cascade nanozymes based on the "butterfly effect" for enhanced starvation therapy through the regulation of autophagy.

Hanchun YaoXiaobao GongMeilin GengSongchao DuanPan QiaoFangfang SunZhihui ZhuBin Du
Published in: Biomaterials science (2022)
Although tumor starvation therapy has been proven to be an excellent method for tumor therapy, its efficiency may be weakened by autophagy, a self-protection mechanism exerted by tumors under starvation stress. Interestingly, over-activated autophagy not only improves the efficacy of starvation therapy, but also induces autophagic death. Herein, we report cascade nanozymes for enhanced starvation therapy by inducing over-activated autophagy. First, glucose oxidase (GOx) modified metal-organic frameworks (NH 2 -MIL88, MOF) were constructed (MOF-GOx). After loading with curcumin (Cur), Cur@MOF-GOx was further decorated with tumor-targeting hyaluronic acid (HA) to obtain Cur@MOF-GOx/HA nanozymes. GOx can catalyze glucose into H 2 O 2 and gluconic acid, which not only leads to tumor starvation, but also provides reactants for the Fenton reaction mediated by the MOF to generate hydroxyl radicals (˙OH) for chemo-dynamic therapy. Most importantly, protective autophagy caused by tumor starvation can be over-activated by Cur to convert autophagy from pro-survival to pro-death, realizing augmented anticancer therapy efficacy. With these cascade reactions, the synergistic action of starvation, autophagy and chemo-dynamic therapy was realized. Generally, the introduction of Cur@MOF-GOx/HA into tumor cells leads to a "butterfly effect", which induces enhanced starvation therapy through subsequent autophagic cell death to completely break the self-protective mechanism of cancer cells, and generate ˙OH for chemo-dynamic therapy. Precise design allows for the use of cascade nanozymes to realize efficient cancer treatment and restrain metastasis.
Keyphrases