Login / Signup

Epidermal loss of Gαq confers a migratory and differentiation defect in keratinocytes.

Colleen L DoçiConstantinos M MikelisJuan Luis Callejas-ValeraKarina K HansenAlfredo A MolinoloAsuka InoueStefan OffermannsJ Silvio Gutkind
Published in: PloS one (2017)
G-protein coupled receptors (GPCRs), which activate heterotrimeric G proteins, are an essential class of transmembrane receptors that are responsible for a myriad of signaling events in normal and pathologic conditions. Two members of the G protein family, Gαq and Gα11, activate one of the main GPCR pathways and function as oncogenes by integrating mitogen-stimulated signaling cascades that are active under malignant conditions. Recently, it has been shown that targeted deletion of Gα11 and Gαq from endothelial cells impairs the Rho-mediated formation of focal adherens junctions, suggesting that Gα11/q signaling may also play a significant role in cytoskeletal-mediated cellular responses in epithelial cells. Indeed, combined deletion of Gα11 and Gαq confers a significant migratory defect in keratinocytes that delays cutaneous wound healing in an in vivo setting. This delay can be attributed to a defect during the reepithelialization phase due to significantly attenuated migratory capacity of Gαq-null keratinocytes under combined Gα11 deficiency. In fact, cells lacking Gα11/q demonstrate a severely reduced ability to respond to mitogenic and migratory signals in the microenvironment, leading to inappropriate and premature terminal differentiation. These results suggest that Gα11/q signaling pathways may be critical for integrating mitogenic signals and cytoskeletal function to achieve normal physiological responses. Emergence of a malignant phenotype may therefore arise from both under- and overexpression of Gα11/q signaling, implicating its upstream regulation as a potential therapeutic target in a host of pathologic conditions.
Keyphrases