Login / Signup

2D Co-MOF nanosheet-based nanozyme with ultrahigh peroxidase catalytic activity for detection of biomolecules in human serum samples.

Huimin WanYufei WangJuan ChenHong-Min MengZhao-Hui Li
Published in: Mikrochimica acta (2021)
A two-dimensional (2D) Co-MOF nanosheet-based nanozyme was developed for colorimetric detection of disease-related biomolecules. The prepared 2D Co-MOFs exhibited ultrahigh peroxidase catalytic activity. 2D Co-MOFs can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to the blue product oxTMB, accompanying an obvious change of absorption value at 652 nm. However, alkaline phosphatase can catalyze the hydrolysis of L-ascorbic acid-2-phosphate to produce ascorbic acid which can reduce the oxTMB to TMB, resulting in an obvious color fading. Therefore, by recording the change of absorption value at 652 nm, the 2D Co-MOF nanosheets were used to detect ascorbic acid (AA) and alkaline phosphatase (ALP). The limit of detection for AA and ALP was 0.47 μM and 0.33 U L-1, respectively. The limit of quantification for AA and ALP was 1.56 μM and 1.1 U L-1, respectively. The developed nanozyme was successfully used to determine alkaline phosphatase in clinical human serum samples and the results were consistent with those provided by the hospital. Furthermore, by integrating 2D Co-MOF nanosheets with image recognition and data processing function fixed on a smartphone, a portable test of ascorbic acid was reached. Schematic presentation of the preparation of two-dimensional Co-MOF nanosheet-based nanozyme and their application in portable detection of biomolecules.
Keyphrases