Login / Signup

Iron-Cobalt Phosphide Encapsulated in a N-Doped Carbon Framework as a Promising Low-Cost Oxygen Reduction Electrocatalyst for Zinc-Air Batteries.

Jinlong LiuZiyu LuoJiayun WuDong QianWeixiong LiaoGeoffrey I N WaterhouseXiangxiong Chen
Published in: Inorganic chemistry (2024)
The oxygen reduction reaction (ORR) plays a vital role in many next-generation electrochemical energy conversion and storage devices, motivating the search for low-cost ORR electrocatalysts possessing high activity and excellent durability. In this work, we demonstrate that iron-cobalt phosphide (FeCoP) nanoparticles encapsulated in a N-doped carbon framework (FeCoP@NC) represent a very promising catalyst for the ORR in alkaline media. The core-shell structured FeCoP@NC catalyst offered outstanding ORR activity with a half-wave potential ( E 1/2 ) of 0.86 V vs reversible hydrogen electrode (RHE) and excellent stability in a 0.1 M KOH electrolyte, outperforming commercial Pt/C and many recently reported noble-metal-free ORR electrocatalysts. The superiority of FeCoP@NC as an ORR electrocatalyst relative to Pt/C was further verified in prototype zinc-air batteries (ZABs), with the aqueous and flexible ZABs prepared using FeCoP@NC offering excellent stability, impressive open circuit voltages (1.56 and 1.44 V, respectively), and high maximum power densities (183.5 and 69.7 mW cm -2 , respectively). Density functional theory calculations revealed that encapsulating FeCoP nanoparticles in N-doped carbon shells resulted in favorable electron penetration effects, which synergistically regulated the adsorption/desorption of ORR intermediates for optimal ORR performance while also boosting the electronic conductivity. Our findings offer valuable new insights for rational design of transition metal phosphide-based catalysts for the ORR and other electrochemical applications.
Keyphrases