Login / Signup

Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene.

Yuyin ZhangTian HuRubei HuShaohua JiangChunmei ZhangHaoqing Hou
Published in: Molecules (Basel, Switzerland) (2022)
Materials with outstanding mechanical properties and excellent dielectric properties are increasingly favored in the microelectronics industry. The application of polyimide (PI) in the field of microelectronics is limited because of the fact that PI with excellent mechanical properties does not have special features in the dielectric properties. In this work, PI composite films with high dielectric properties and excellent mechanical properties are fabricated by in-situ reduction of fluorinated graphene (FG) in polyamide acid (PAA) composites. The dielectric permittivity of pure PI is 3.47 and the maximum energy storage density is 0.664 J/cm 3 at 100 Hz, while the dielectric permittivity of the PI composite films reaches 235.74 under the same conditions, a 68-times increase compared to the pure PI, and the maximum energy storage density is 5.651, a 9-times increase compared to the pure PI films. This method not only solves the problem of the aggregation of the filler particles in the PI matrix and maintains the intrinsic excellent mechanical properties of the PI, but also significantly improves the dielectric properties of the PI.
Keyphrases
  • room temperature