Regio- and Enantioselective Synthesis of Trifluoromethyl-Substituted Homoallylic α-Tertiary NH2 -Amines by Reactions Facilitated by a Threonine-Based Boron-Containing Catalyst.
Diana C FagerRyan J MorrisonAmir H HoveydaPublished in: Angewandte Chemie (International ed. in English) (2020)
A method for catalytic regio- and enantioselective synthesis of trifluoromethyl-substituted and aryl-, heteroaryl-, alkenyl-, and alkynyl-substituted homoallylic α-tertiary NH2 -amines is introduced. Easy-to-synthesize and robust N-silyl ketimines are converted to NH-ketimines in situ, which then react with a Z-allyl boronate. Transformations are promoted by a readily accessible l-threonine-derived aminophenol-based boryl catalyst, affording the desired products in up to 91 % yield, >98:2 α:γ selectivity, >98:2 Z:E selectivity, and >99:1 enantiomeric ratio. A commercially available aminophenol may be used, and allyl boronates, which may contain an alkyl-, a chloro-, or a bromo-substituted Z-alkene, can either be purchased or prepared by catalytic stereoretentive cross-metathesis. What is more, Z-trisubstituted allyl boronates may be used. Various chemo-, regio-, and diastereoselective transformations of the α-tertiary homoallylic NH2 -amine products highlight the utility of the approach; this includes diastereo- and regioselective epoxide formation/trichloroacetic acid cleavage to generate differentiated diol derivatives.
Keyphrases
- room temperature
- molecular docking
- ionic liquid
- perovskite solar cells
- protein kinase
- photodynamic therapy
- reduced graphene oxide
- metal organic framework
- squamous cell carcinoma
- crystal structure
- combination therapy
- transcription factor
- dna binding
- cancer therapy
- structural basis
- capillary electrophoresis
- gold nanoparticles
- locally advanced