Spatially Resolved Transcriptomics Technology Facilitates Cancer Research.
Qian WangYuan ZhiMoxin ZiYongzhen MoYumin WangQianjin LiaoShanshan ZhangZhaojian GongFuyan WangZhaoyang ZengCan GuoZhaoyang ZengPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
Single cell RNA sequencing (scRNA-seq) provides a great convenience for studying tumor occurrence and development for its ability to study gene expression at the individual cell level. However, patient-derived tumor tissues are composed of multiple types of cells including tumor cells and adjacent non-malignant cells such as stromal cells and immune cells. The spatial locations of various cells in situ tissues plays a pivotal role in the occurrence and development of tumors, which cannot be elucidated by scRNA-seq alone. Spatially resolved transcriptomics (SRT) technology emerges timely to explore the unrecognized relationship between the spatial background of a particular cell and its functions, and is increasingly used in cancer research. This review provides a systematic overview of the SRT technologies that are developed, in particular the more widely used cutting-edge SRT technologies based on next-generation sequencing (NGS). In addition, the main achievements by SRT technologies in precisely unveiling the underappreciated spatial locations on gene expression and cell function with unprecedented high-resolution in cancer research are emphasized, with the aim of developing more effective clinical therapeutics oriented to a deeper understanding of the interaction between tumor cells and surrounding non-malignant cells.